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Abstract. The author earlier developed new classes of quasi-spectral polynomials, and 

the study presents new findings about these classes for the efficient resolution of 

mathematical physics problems. By examining the approximation behavior of Fourier 

series by systems of quasispectral polynomials and the accompanying order of 

approximation, we explore the potential for retrieving information about functions that 

are solutions of boundary value problems. This work proves that the function, which 

in practice is the Sobolev space solution of the boundary value problem, can be 

reconstructed with the same accuracy in the base space of all square summable 

functions as it could be reconstructed if it were explicitly given. 
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One of the major ways that computers solve hydrodynamic and gas dynamics 

problems is through the use of spectral approaches. Fourier series methods, Galerkin 

methods, the Lanczos tau method, Dzyadyk's approximation method (a-method) [1], 

and other techniques are examples of spectral methods. Classic orthogonal 

polynomials, such as Hermit, Laguerre, Jacobi, and especially Legendre and 

Chebyshov polynomials of the first and second kinds, are frequently used as basis 

functions in these techniques. 



The author [2-4] proposed to use classes of quasispectral polynomials of the first 

kind 𝐾𝑖
∘

(𝑥), 𝑖 = 1, . . . ,2𝑛 + 2 and the second kind 𝐾𝑖
⋅
(𝑥), 𝑖 = 0, . . . ,2𝑛 + 1 as basic 

functions which depend of the natural parameter 𝑛. Polynomials 𝐾𝑖
∘, 𝑖 = 2𝑛, which we 

call interior polynomials are orthogonal in the metric  of 𝐿2[−1,1] space: 

(𝐾𝑖
∘, 𝐾𝑗

∘
) = ∫ 𝐾𝑖

∘𝐾𝑗
∘𝑑𝑥

1

−1
= 0, 𝑖 ≠ 𝑗, ‖𝐾𝑖

∘
‖ = √(𝐾𝑖

∘, 𝐾𝑖
∘

) = 1 

simultaneously with its first derivatives 𝐷 = 𝑑 𝑑𝑥⁄ , i.e. it means that 

 (𝐷𝐾𝑖
∘, 𝐷𝐾𝑗

∘) = 0, 𝑖 ≠ 𝑗, (𝐷𝐾𝑖
∘, 𝐾𝑖

∘) = ‖𝐷𝐾𝑖
∘‖2 = 𝜆𝑖

∘ > 0. 

Because of the previous facts, the interior quasispectral polynomials are orthogonal in 

the Hilbert space 𝐻1
 endowed with a inner product and a norm of the form 

 (𝑢, 𝑣)1 = ∫ (𝐷𝑢𝐷𝑣 + 𝑐𝑢𝑣)𝑑𝑥1
−1 , ‖𝑢‖1 = √(𝑢, 𝑢)1, (1) 

where 𝑢 = 𝑢(𝑥), 𝑣 = 𝑣(𝑥), с > 0– some number. The subspace of the function space 

𝐻1 with zero boundary conditions will be denoted by 𝐻0
1. It is introduced here as a 

closure in the metric 𝐻1 of the set of all polynomials with zero boundary conditions of 

the first kind. 

 Each of the polynomials of the second kind 𝐾𝑖
•, 𝑖 = 1, . . . ,2𝑛 coincides with the 

derivative of the corresponding polynomial 𝐾𝑖
∘
 up to a certain factor: 

 𝐷𝐾𝑖
∘ = √𝜆𝑖

∘𝐾𝑖
•. (2) 

Other polynomials of these families are chosen in such a way that they form an 

orthonormal basis in the space of all algebraic polynomials 𝔐
2𝑛+2

 of degree ≤ 2𝑛 + 1 

endowed with a inner product and a metric 

 (𝑢, 𝑣) = ∫ 𝑢𝑣𝑑𝑥
1

−1
, ‖𝑢‖ = √(𝑢, 𝑢), 

respectively. In other words, 𝔐
2𝑛+2

 is a subspace of the space 𝐿2[−1,1].  

Let's define the notations QS1(n) and QS2(n) for the first 𝐾𝑖
∘
 and second kinds 𝐾𝑖

⋅
, 

respectively, of quasispectral polynomials. In order to approximate boundary value 



problems with Dirichlet conditions [3] (conditions of the first kind) and QS2(n) – with 

Neumann conditions [4], we used the polynomials QS1(n) (of the first kind) and 

QS2(n) (of the second kind). By creating the corresponding Fourier series, we were 

able to resolve the Dirichlet and Neumann problems. 

The interval [−1,1] is chosen as the standard interval in which special classes of 

quasispectral polynomials are studied. The results obtained in the work by linear 

substitution are easily transferred to an arbitrary interval [𝑎, 𝑏]. Also, these results will 

find application in spaces of higher dimensions. We limit ourselves to a simple case so 

as not to blur the essence of the question. We used these and similar results in the 

design and analysis of software for fast and effective solving of some problems of 

mathematical physics, for example works [2-4]. 

The goal of the paper is to investigate and analyze the approximation 

characteristics of one particular class, namely QS1, of algebraic polynomials designed 

for the approximation of functions that are solutions of boundary value problems in 

various metrics. 

The starting point of the work was the classic Legendre polynomials 𝑃𝑖 =

𝑃𝑖(𝑥), 𝑖 = 0,1, . .. standardized by the condition 𝑃𝑖(1) = 1, orthogonal in 𝐿2:

 ∫ 𝑃𝑖𝑃𝑗𝑑𝑥
1

−1
= 0, 𝑖 ≠ 𝑗, ∫ 𝑃𝑖

2𝑑𝑥
1

−1
=

2

2𝑖+1
 

and corresponding Fourier-Legendre series: 

 𝑓 = ∑ 𝑓𝑖
∞
𝑖=0 𝑃𝑖 , 𝑓𝑖 =

2𝑖+1

2
∫ 𝑓(𝑥)𝑃𝑖(𝑥)𝑑𝑥

1

−1
. 

The operator for taking the partial sum of the Fourier-Legendre series has the form 

 𝜋𝑁(𝑓) = ∑ 𝑓𝑖
𝑁−1
𝑖=0 𝑃𝑖 

and as is well known[1], gives the best approximation in 𝐿2: 

 ‖𝑓 − 𝜋𝑁‖ ≤ min
𝑝𝑁∈𝔐𝑁

‖𝑓 − 𝑝𝑁‖. 

The property of orthonormality of quasispectral polynomials provides the 

possibility of presenting this operator in two more forms: 



 𝜋𝑁(𝑓) = ∑ 𝑓𝑖
∘𝐾𝑖

∘𝑁−1
𝑖=0 , 𝑓𝑖

∘ = ∫ 𝑓𝐾𝑖
∘𝑑𝑥

1

−1
, 𝑖 = 1, . . . , 𝑁, 

 𝜋𝑁(𝑓) = ∑ 𝑓𝑖
•𝐾𝑖

•𝑁−1
𝑖=0 , 𝑓𝑖

• = ∫ 𝑓𝐾𝑖
•𝑑𝑥

1

−1
, 𝑖 = 1, . . . , 𝑁. 

The family of polynomials of the first kind QS1(n), which includes interior 

polynomials and two polynomials 𝐾2𝑛+1
∘ , 𝐾2𝑛+2

∘
, which are called boundary, is 

orthonormal in the metric of space 𝐿2[−1,1]. Boundary polynomials are defined by 

formulas 

 𝐾2𝑛+2
∘ = 𝜅2𝑛+2

−1𝐷𝑃2𝑛+2, 𝐾2𝑛+1
∘ = 𝜅2𝑛+1

−1𝐷𝑃2𝑛+1, (3) 

moreover 

 𝐾2𝑛+2
∘ (1) =

𝜅2𝑛+2

2
, 𝐾2𝑛+1

∘ (1) =
𝜅2𝑛+1

2
, 𝜅𝑖 = √𝑖(𝑖 + 1). 

Interior quasispectral polynomials are determined from the condition of their 

transformation to zero at the ends of the main interval: 

 𝐾𝑖
∘(±1) = 0, 𝑖 = 1, . . . ,2𝑛. 

 For 𝑖 = 1, … , 𝑛 the following formulas for the differentiation of quasispectral 

polynomials, hold true 

 

 𝐷2𝐾2𝑖
∘ (𝑥) = −𝜆2𝑖

∘ 𝐾2𝑖
∘ (𝑥) + 𝜏2𝑖

∘ 𝐾2𝑛+2
∘ (𝑥), (4) 

 𝐷2𝐾2𝑖−1
∘ (𝑥) = −𝜆2𝑖−1

∘ 𝐾2𝑖−1
∘ (𝑥) + 𝜏2𝑖−1

∘ 𝐾2𝑛+1
∘ (𝑥), (5) 

where 

 𝜆𝑖
∘ = − ∫ (𝐷2𝐾𝑖

∘(𝑥))𝐾𝑖
∘(𝑥)

1

−1
𝑑𝑥 = ∫ (𝐷𝐾𝑖

∘(𝑥))
1

−1

2
𝑑𝑥 > 0, 

 𝜏2𝑖−1
∘ = ∫ (𝐷2𝐾2𝑖−1

∘ (𝑥))𝐾2𝑛+1
∘ (𝑥)

1

−1
𝑑𝑥, 𝜏2𝑖

∘ = ∫ (𝐷2𝐾2𝑖
∘ (𝑥))𝐾2𝑛+2

∘ (𝑥)
1

−1
𝑑𝑥. (6) 

We present the finite Fourier-Legend series of the given function 𝑢 ∈ 𝐿2[−1,1] 
in the form 

 𝑢𝑁 = ∑ 𝑢𝑖
∘𝐾𝑖

∘(𝑥)𝑖<𝑁  (7) 

and thereby we define the operator 𝜋𝑁: 𝐿2 → 𝔐
𝑁

 of taking the partial sum of the 

Fourier-Legendre series, but in the case of QS1(n) basis. 



 Taking into account the orthonormality of the polynomials of the family QS1(n) 

in the case of the classical Fourier-Legendre series, its coefficients are calculated by 

the formulas 

 𝑢𝑖
∘ = ∫ 𝑢(𝑥)𝐾𝑖

∘(𝑥)𝑑𝑥
1

−1
, 𝑖 = 1, . . .2𝑛 + 2. (8) 

The interior quasispectral polynomials become zero at the points ±1, and 

therefore, when the function 𝑢 ∈ 𝐻1, its boundary Fourier coefficients can be found 

approximately from the interpolation conditions: 

 𝑢2𝑛+1
∘ =

𝑢(1)+𝑢(−1)

√(2𝑛+1)(2𝑛+2)
, 𝑢2𝑛+2

∘ =
𝑢(1)−𝑢(−1)

√(2𝑛+2)(2𝑛+3)
 (9) 

and the resulting Fourier series will be called a modified Fourier series. 

Let 

 ∂𝑢𝑁 = 𝑢2𝑛+1
∘ 𝐾2𝑛+1

∘ (𝑥) + 𝑢2𝑛+2
∘ 𝐾2𝑛+2

∘ (𝑥). (10) 

The interior quasispectral polynomials of the QS1 family are orthogonal in the 

Sobolev space 𝐻1
 (see (1)), therefore, the interior QS1 Fourier coefficients of the 

function 𝑢 ∈ 𝐻0
1, i.e., in the case of homogeneous conditions, we determine by the 

formula 

 𝑢𝑖
∘ =

(𝑢,𝐾𝑖
∘)

1

(𝐾𝑖
∘,𝐾𝑖

∘)
1

, (11) 

which actually corresponds to the expand of functions in the energy space metric. In 

the case of heterogeneous conditions, the interior QS1 Fourier coefficients are defined 

by the formulas 

 𝑢𝑖
∘ =

(𝑢−∂𝑢𝑁,𝐾𝑖
∘)

1

(𝐾𝑖
∘,𝐾𝑖

∘)
1

. (12) 

The question arises, is there not a big contradiction here in that the boundary 

coefficients are defined in (8) relative to the inner product induced by the space 

𝐿2[−1,1] and the interior ones according to the formulas (11), (12), which correspond 

to the energy metric of the space 𝐻0
1
? The following lemma provides a partial answer. 

Lemma 1. If the function 𝑢 ∈ 𝐻0
1 is a polynomial from 𝔐

𝑁
, then the interior QS1 

Fourier coefficients are simultaneously the 𝐿2–Fourier coefficients in the basis QS1(n): 

 𝑢𝑖
∘ =

(𝑢−∂𝑢𝑁,𝐾𝑖
∘)

1

(𝐾𝑖
∘,𝐾𝑖

∘)
1

= (𝑢 − ∂𝑢𝑁 , 𝐾𝑖
∘), 𝑢 ∈ 𝔐𝑁 . (13) 



Proof. The lemma is established by checking formula on each element of the 

basis, in particular, the interior coefficients are calculated according to formula (12); 

in the case of boundary polynomials, that is, when 𝑢 = 𝐾2𝑛+1
∘  or 𝑢 = 𝐾2𝑛+2

∘ , the 

boundary coefficients are equal to zero: 𝑢2𝑛+1
∘ = 0, 𝑢2𝑛+2

∘ = 0. 

 Remark. In the case of polynomial  𝑢 ∈ 𝔐𝑁
, 

 𝑢 = ∂𝑢𝑁 + ∑ 𝑢𝑖
∘𝐾𝑖

∘2𝑛
𝑖=1 , (14) 

where the polynomial ∂𝑢𝑁 is given in the form (10), with the boundary coefficients 

determined either by formulas (8) or by formulas (9) (from the interpolation 

conditions), and we find the interior Fourier coefficients either by formulas (8) , or by 

formulas (12). Choosing one of the two Fourier coefficient formulas from the pair will 

produce different outcomes for an arbitrary function. In the case of, for instance, the 

approximate solution of boundary value problems for elliptic equations, using formulas 

of the interpolation type (9) to calculate the boundary coefficients and formulas of the 

QS1 type to calculate the interior coefficients (12) is a reasonable choice from the 

perspective of practical applications. As a result, we arrive at the following form of the 

approximation operator:  

 𝑄𝑁𝑢 = ∂𝑢𝑁 + 𝑄𝑁
0 𝑢, 𝑄𝑁

0 𝑢 = ∑ 𝑢𝑖
∘𝐾𝑖

∘2𝑛
𝑖=1 , 

 ∂𝑢𝑁 =
𝑢(1)+𝑢(−1)

√(𝑁−1)𝑁
𝐾𝑁−1

∘ +
𝑢(1)−𝑢(−1)

√(𝑁+1)𝑁
𝐾𝑁

∘ , 𝑁 = 2𝑛 + 2 

for any given function 𝑢 ∈ 𝐻1. 

 An arbitrary function 𝑢 ∈ 𝐻1
 has the form 

 𝑢 = 𝐴𝑁𝑢 + ∫ ∑ 𝑢′𝑖𝑃𝑖(𝑠)𝑑𝑠∞
𝑖=𝑁

𝑥

−1
, 𝑢′𝑖 =

2𝑖+1

2
∫ 𝐷𝑢𝑃𝑖(𝑥)𝑑𝑥

1

−1
, (15) 

where 𝐴𝑁𝑢 is an approximation polynomial given by the formula 

 𝐴𝑁𝑢 =
𝑢(1)+𝑢(−1)

2
+

𝑢(1)−𝑢(−1

2
𝑥 + ∫ ∑ 𝑢′𝑖𝑃𝑖(𝑠)𝑑𝑠2𝑛

𝑖=1
𝑥

−1
, (16) 

and 𝐴𝑁: 𝐻1 → 𝔐
𝑁

 is the corresponding operator. 

Each of the operators 𝜋𝑁, 𝑄𝑁 should be investigated from the point of view of the 

approximation error. In order to determine how much each operator differs from the 

others, it is important to look at each from the perspective of approximation error, or 

how dissimilar their results are from those of the approximation operator 𝐴𝑁. We shall 



examine their application to the arbitrary function 𝑢 ∈ 𝐻1 for this reason, which may 

always be expressed in the form (15). They are both projective, hence applying them 

to the polynomial 𝐴𝑁𝑢 does not change it: 

 𝜋𝑁𝐴𝑁𝑢 = 𝐴𝑁𝑢, 𝑄𝑁𝐴𝑁𝑢 = 𝐴𝑁𝑢. 

Therefore, we will apply these operators to the remainder of the series (15), namely  

 𝜋𝑁𝜀𝑁𝑢 = 𝜋𝑁 ∫ ∑ 𝑢′𝑖𝑃𝑖(𝑠)𝑑𝑠∞
𝑖=𝑁

𝑥

−1
, 𝑄𝑁𝜀𝑁𝑢 = 𝑄𝑁 ∫ ∑ 𝑢′𝑖𝑃𝑖(𝑠)𝑑𝑠∞

𝑖=𝑁
𝑥

−1
. 

By integrating the Legendre polynomials, we get 

 𝜀𝑁𝑢 = ∑ 𝑢′𝑖
𝑃𝑖+1−𝑃𝑖−1

2𝑖+1
𝑑𝑠∞

𝑖=𝑁 , 

hence 

 𝜋𝑁𝜀𝑁𝑢 = −
𝑢′𝑁−1

2𝑁−1
𝑃𝑁−2 −

𝑢′𝑁

2𝑁+1
𝑃𝑁−1, 

i.e. 

 𝜋𝑁𝑢 − 𝐴𝑁𝑢 = −
𝑢′𝑁−1

2𝑁−1
𝑃𝑁−2 −

𝑢′𝑁

2𝑁+1
𝑃𝑁−1, 

 ‖𝜋𝑁𝑢 − 𝐴𝑁𝑢‖ ≤ 2−1𝑁−1𝐸𝑁(𝐷𝑢). (17) 

Now let's do the same with the polynomial 𝜂 = 𝑄𝑁𝑢 − 𝐴𝑁𝑢, 𝜂(±1) = 0. Let, 

 𝑔 = 𝑢′𝑁−1𝐽𝑃𝑁−1 + 𝑢′𝑁𝐽𝑃𝑁 , 𝐽𝑓(𝑥) = ∫ 𝑓(𝑠)𝑑𝑠
𝑥

−1
, 𝑓 ∈ 𝐿2. (18) 

Then, 

 𝑄𝑁
0 𝑔 = 𝑢′𝑁−1𝑄𝑁

0 𝐽𝑃𝑁−1 + 𝑢′𝑁𝑄𝑁
0 𝐽𝑃𝑁 , 

where 

 𝑄𝑁
0 𝐽𝑃𝑁−1 = ∑ [𝐽𝑃𝑁−1]2𝑖−1

∘ 𝐾2𝑖−1
∘𝑛

𝑖=1 , 𝑄𝑁
0 𝐽𝑃𝑁 = ∑ [𝐽𝑃𝑁]2𝑖

∘ 𝐾2𝑖
∘𝑛

𝑖=1 , 

 [𝐽𝑃𝑁−1]𝑖
∘ =

(𝐽𝑃𝑁−1,𝐾𝑖
∘)

𝜆𝑖
∘+𝑐

, [𝐽𝑃𝑁]𝑖
∘ =

(𝐽𝑃𝑁,𝐾𝑖
∘)

𝜆𝑖
∘+𝑐

. 

Based on (13) we get 

 ‖𝑄𝑁
0 𝐽𝑃𝑁−1‖2 = ∑ [𝐽𝑃𝑁−1]2𝑖−1

∘ 2𝑛
𝑖=1 , ‖𝑄𝑁

0 𝐽𝑃𝑁‖ = ∑ [𝐽𝑃𝑁]2𝑖
∘ 2𝑛

𝑖=1 . (19) 

Let us now estimate the quantities (19). By the definition of the inner product in 𝐻1
 

and (2), we have 



 (𝐽𝑃𝑁 , 𝐾2𝑖
∘ )1 = (𝐷𝐽𝑃𝑁 , 𝐷𝐾2𝑖

∘ ) + c(𝐽𝑃𝑁 , 𝐾2𝑖
∘ ) = (𝑃𝑁 , √𝜆2𝑖

• 𝐾2𝑖
• ) + c(𝐽𝑃𝑁 , 𝐾2𝑖

∘ ), 

and so 

 (𝐽𝑃𝑁 , 𝐾2𝑖
∘ )1 = c(𝐽𝑃𝑁 , 𝐾2𝑖−1

∘ ), (𝐽𝑃𝑁−1, 𝐾2𝑖−1
∘ )1 = c(𝐽𝑃𝑁−1, 𝐾2𝑖−1

∘ ). (20) 

Applying multiple integration, integration by parts and (4) ((5) in odd case), we get 

 (𝐽𝑃𝑁 , 𝐾2𝑖
∘ ) = (𝐷2𝐽3𝑃𝑁 , 𝐾2𝑖

∘ ) = (𝐽3𝑃𝑁 , 𝐷2𝐾2𝑖
∘ ) = (𝐽3𝑃𝑁 , −𝜆2𝑖

∘ 𝐾2𝑖
∘ + 𝜏2𝑖

∘ 𝐾2𝑛+2
∘ ), 

and consequently 

 (𝐽𝑃𝑁 , 𝐾2𝑖
∘ ) = −𝜆2𝑖

∘ (𝐽3𝑃𝑁 , 𝐾2𝑖
∘ ) + 𝜏2𝑖

∘ (𝐽3𝑃𝑁 , 𝐾2𝑛+2
∘ ), 𝑁 = 2𝑛 + 2. (21) 

Next equality follows from (20) and (21): 

 [𝐽𝑃𝑁]2𝑖
∘ =

(𝐽𝑃𝑁,𝐾2𝑖
∘ )

1

𝜆2𝑖
∘ +𝑐

= −
𝜆2𝑖

∘

𝜆2𝑖
∘ +𝑐

(𝐽3𝑃𝑁 , 𝐾2𝑖
∘ ) +

𝜏2𝑖
∘

𝜆2𝑖
∘ +𝑐

(𝐽3𝑃𝑁 , 𝐾2𝑛+2
∘ ) (22) 

Due to equality (3) and the Legendre polynomials' orthogonality, we obtain 

 (𝐽3𝑃𝑁 , 𝐾2𝑛+2
∘ ) = (𝐽3𝑃𝑁 , 𝜅𝑁

−1𝐷𝑃𝑁) = −(𝐽2𝑃𝑁 , 𝜅𝑁
−1𝑃𝑁), 

whence, repeatedly applying the formula for integration of Legendre polynomials 

 𝐽𝑃𝑖 = (𝑃𝑖+1 − 𝑃𝑖−1) (2𝑖 + 1)⁄ , 𝑖 = 1,2, . .., 

we will get 

 (𝐽3𝑃𝑁 , 𝐾N
∘ ) = 𝑂(𝑁−4). (23) 

Take into account formula (20) from [4]: 

 ∑ (
𝜏2𝑖

∘

𝜆2𝑖
∘ )

2

=
𝑛(2𝑛+1)

4𝑛+3

𝑛
𝑖=1 =

(𝑁−1)(𝑁−2)

4𝑁−2
= 𝑂(𝑁), 

and formula (23), we find 

 ‖𝑄𝑁
0 𝐽𝑃𝑁‖ = √∑ [𝐽𝑃𝑁]2𝑖

∘ 2𝑛
𝑖=1 = 𝑂(𝑁−3−1/2), 

Similarly, we will get an estimation 

 ‖𝑄𝑁
0 𝐽𝑃𝑁−1‖ = √∑ [𝐽𝑃𝑁−1]2𝑖−1

∘ 2𝑛
𝑖=1 = 𝑂(𝑁−3−1/2). 

From the last two estimations and (18), we obtain the asymptotic estimation 



 ‖𝑄𝑁
0 𝜀𝑁‖ = ‖𝑄𝑁

0 𝑔‖ = ‖𝑢′𝑁−1𝐽𝑃𝑁−1 + 𝑢′𝑁𝐽𝑃𝑁‖ ≤ 𝑂(𝑁−3)𝐸𝑁(𝐷𝑢). 

In this way, we established the desired estimate of the deviation QS1 of the polynomial 

approximation 𝑄𝑁𝑢 of the function 𝑢 ∈ 𝐻1 from the approximation polynomial (16): 

 ‖𝑄𝑁𝑢 − 𝐴𝑁𝑢‖ ≤ 𝑂(𝑁−3)𝐸𝑁(𝐷𝑢). (24) 

Comparing two estimates: given and (17), we get 

 ‖𝑄𝑁𝑢 − 𝜋𝑁𝑢‖ ≤ ‖𝑄𝑁𝑢 − 𝜋𝑁𝑢‖ + ‖𝑄𝑁𝑢 − 𝐴𝑁𝑢‖ ≤ (2−1𝑁−1 + 𝑂(𝑁−3))𝐸𝑁(𝐷𝑢), 

from which we obtain an important asymptotic estimation 

 ‖𝑄𝑁𝑢 − 𝜋𝑁𝑢‖ ≤ 2−1𝑁−1𝐸𝑁(𝐷𝑢). (25) 

Conclusions. In the case of a modified Fourier series, estimate (25) provides an answer 

to the question of whether there will be a significant difference between calculating the 

interior Fourier coefficients of the function 𝑢 ∈ 𝐻1 precisely using the formulas for the 

inner product in the space 𝐿2 or in the space 𝐻1. It turned out that, from an 

approximation standpoint, there is no discernible difference in the metric 𝐿2; more 

specifically, we obtain results that are almost identical, which is supported by the 

asymptotic estimate (25). In other words, the functions 𝑢 ∈ 𝐻1 are recovered with the 

highest order of approximation in the metric of the basis space 𝐿2. According to the 

findings of works [3, 4], these findings apply to the situation of functions 𝐻1
[−1,1]𝑑, 

where d is the spatial dimension. 
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